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LIQUID CRYSTALS, 1991, VOL. 10, No. 5,  597-621 

Magnetic and electric field induced bistability 
in nematics and cholesterics 

by U. D. KIN1 
Raman Research Institute, Bangalore-560080, India 

(Received 24 September 1990; accepted 13 March 1991) 

Continuum theory is used for setting up the differential equations governing 
bistable behaviour of the director field (n) in nematics having positive diamagnetic 
susceptibility anisotropy xa, the bistability being induced by slowly rotating a 
magnetic field H away from no, the initial uniform director orientation. The 
bistability width wb is the range of magnetic tilt angle over which two different 
equilibrium configurations can exist. Under the rigid anchoring hypothesis two 
simple cases are studied (viz. the splay/bend and twist geometries) in which n is 
described by a single orientational degree of freedom and H rotates about an axis 
which is either normal to or parallel to the sample planes. The splay/bend geometry 
can be generalized to uniformly tilted no and to non-symmetric director tilt at the 
boundaries; the twist geometry can be extended to include twisted nematics as well 
as chiral nematics (or cholesterics having equilibrium pitch of the order of 
the sample thickness). Bistability should be observable even in situations where a 
Freedericksz threshold does not exist. The width wb is found to depend on the 
geometry, Hand on no (and also on the equilibrium pitch for the chiral systems). For 
rigid anchoring, scaling analysis shows that wb should depend only on the reduced 
field for given material parameters and tilt of n, and suggests the need for 
experiments using different sample thicknesses. When the director anchoring at the 
sample planes is weakened, w,, varies sensitively with anchoring strength. When the 
anchoring is weak enough and H strong enough there might occur a discontinuous 
transition from a deformed state to one in which n is oriented uniformly parallel to 
H. The simple scaling which is valid for rigid anchoring does not hold for weak 
anchoring. A transition between two distortion states should be accompanied by 
transient flow in the splay/bend geometry; in the twist case, a transition may occur 
even without accompanying flow. Scaling analysis indicates that the time of 
transition between two states might depend on sample thickness. Linear stability 
analysis shows that n has a propensity towards instability near the edges of the 
bistable region. The governing equations can be extended to the case of H rotating 
at a uniform rate, a situation which is of current experimental interest. An electric 
field, E, acting along the sample planes affects the scaling. The electric field as well as 
the magnitude of the dielectric anisotropy E, ( > O )  now determine w,,. Flexoelectric- 
ity, which appears even as a volume effect for large deformations, may have 
considerable influence on wb especially for weak anchoring when E is impressed. 
Magnetic field induced bistability should be observable in more complex configur- 
ations in which n is described by two orientational degrees of freedom; this suggests 
generalizations of the rotating field experiments. In this context the case of a xa < O  
nematic is briefly studied. 

1. Introduction 
The continuum theory [l-81 has met with a fair measure of success in explaining 

various phenomena related to the static and dynamic behaviour of nematics and 
cholesterics. These materials have generated considerable interest mainly because of 
the various effects which arise through the interaction between the director orientation 

0267-8292/91 $3.00 Q 1991 Taylor & Francis Ltd 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
4
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



598 U. D. Kini 

n and external orienting fields (E,H) and also because of the coupling between 
orientation and flow. In particular, the H induced Freedericksz effect in (x, > 0) 
nematics has been useful for determining the curvature elastic constants. Above the 
transition, transient flow effects [9, lo] are induced by a viscous stress which is brought 
into existence by the time rate of change of n. The threshold H ,  becomes a characteristic 
field for the given geometry. 

It is well known that H acting along no (or -no) is a purely stabilizing field for xa 
positive nematics. If H is impressed at some angle $ with no (O<$<n/2) a 
monodomain deformation results without threshold. On the other hand with H normal 
to no a distortion occurs only above a threshold and more than one domain of 
deformation can form separated by domain walls. Thus the following question arises: 
Suppose we start with H acting along no (or -no) and rotate H in small steps away from 
no such that the axis of rotation is normal to no. How does the distortion change? 

In principle, there must occur some transient effect each time H is rotated away 
from its present direction. If the rotation is executed in small steps these effects can be 
ignored and the problem can be treated from the point of view of statics. This was done 
by Onnagawa and Miyashita [l I] when they addressed a theoretical and experimental 
investigation. They found that the nature of variation of deformation depends 
ciritically on the strength H of the field. Using capacitance measurements they showed 
that when H < H ,  the distortion (and hence the capacitance) changes continuously 
when H is rotated from no towards -no. When H > H ,  however, a discontinuous 
change can be discerned in the capacitance as the tilt of H crosses a certain value; in this 
case, the capacitance exhibits hysteresis when the direction of rotation of H is reversed. 
The theoretical analysis was extended more rigorously by Motooka and Fukuhara 
[12] who showed that, in general, there can exist two stable configurations in a 
sufficiently strong H while there is only one stable deformation possible in weaker 
fields. Recently, Karn and Shen [13] conducted an optical investigation of the 
bistability of homeotropic anchoring; they also studied the transition from an unstable 
deformation state to a stable configuration. 

The effect of E on nematics is more complex [6]  as the field inside the sample can get 
modified by director deformations. In many cases flexoelectricity 1141 has to be taken 
into account (see, for example [lS]). Recent work [16] has shown that the E induced 
bend transition in nematics with high positive E, can be discontinuous; in such 
materials even the H induced splay transition may turn out to be of first order under the 
stabilizing action of E [17]. Theoretical calculations have shown [18] that the 
combined effects of E acting along the sample plane and H impressed along different 
directions may lead to changes in the distortion which may even depend upon the order 
in which H and E are applied. 

The work on bistability in [ll-131 essentially deals with the splay/bend geometry. 
There is every reason to believe that similar effects may also be observed in the twist 
geometry with n being again described by a single orientational degree of freedom 
(angle). Undoubtedly E acting along or normal to the sample planes should be able to 
affect the bistability width w,,. It would also be instructive to find out what happens 
when the ground state, in the absence of external fields, is not uniformly aligned but 
homogeneously distorted. For instance, in the splay/bend case we could start with 
some non-symmetric alignments at the boundary [19]; in the twist configuration one 
can start with either a twisted or a chiral nematic (of pitch of the order of the sample 
thickness obtained by dissolving chiral impurities in a nematic [5]). The possible effect 
that weakening of director anchoring at the boundaries [20,21] might have on wb must 
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Orientational bistability in nematics 599 

not be overlooked. The assumption of finite anchoring energy is more realistic than the 
rigid anchoring hypothesis and may also have a profound influence on field induced 
deformations [lS, 22-24]. An investigation of the total free energy of the different 
configurations, especially in the region of bistability, becomes necessary. It should be 
remembered that transient flow might accompany transitions that occur from an 
unstable to a stable configuration [9, lo]; this may even be amenable to a description 
by linear stability analysis. Lastly, the various interesting geometries involving rotating 
fields come to mind (for instance the Tsvetkov experiment [S]; see also [25-281). One 
wonders whether the studies on bistability [l l-131 can be regarded as being 
undertaken at the static limit of some more general dynamical situation. 

With the above motivation the mathematical model is developed and the method of 
solution indicated in 82. Sections 3 and 4 contain results for the splay/bend and twist 
configurations in various situations. More complex director profiles have been briefly 
discussed in 8 5. Section 6 concludes the discussion. 

2. The mathematical model; method of solution 
The simplest situation that can arise is one in which n is described by a single angle. 

This is true in the splaylbend and twist geometries. The sample planes are assumed to 
be at z = k h (sample thickness = 2h). The deformation angle is assumed to be a function 
ofz and time ( t )  in the most general case. For evaluating the total free energy F ,  low4 m2 
of the area of either plate is chosen. It is convenient to separately treat the two 
geometries. 

2.1. Splaylbend geometry 
The easy axes of director anchoring at the sample planes is assumed to be 

n(z= f h, t )  =(sin 8&, 0, cos @+). (2.1) 

H = (HS,,  0, HC,); S, = sin $; C ,  = cos $ (2.2) 

Under the action of 

n is taken to be 

n(z, t )  = (So, 0, Co); 8 = 6(z, t )  

and the velocity field 

v(z, t )  = (ux, 0,O); 0, = u,(z, t). (2.4) 

The volume free energy density at time t is (except for terms independent of distortion) 

where K ,  and K ,  are the splay and bend curvature elastic constants, respectively. The 
surface free energy density at time t is [20,21] 

W,,=[$,+ sinZ{8(z= +h)-8+}]+[&- sin2{6(z= -h)--8-}] (2.6) 
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600 U. D. Kini 

where B, are the (splay/bend) anchoring strengths at z = ? h, respectively. The torque 
and force equations become 

(2.7) 

(2.8) 

I . f l ( Q ) L  + 4 ( ~ . f l / ~ ~ ) Q 2 , ,  +*PcLOXaHZ sin @t,b - 28) 

- Y 1 6 -  gz(0)ux,, - Pie'== 0; sz(4 = P Z G  - PJBZ 

C ~ 1 ( ~ ) ~ , , , + g , ( ~ ) ~ I ~ , - P ~ , = o ~  

9 l(4 = P1 SBZG + Yl& + V C C k  

a superimposed dot denotes the time derivative; the p i  are Leslie viscosity coefficients; 
the q values are Miesowicz coefficients [ S ] ;  y1 is the twist viscosity coefficient; p is the 
density; p1 is the moment of inertia density of the director field (p  and pl, which 
correspond to inertial effects, are generally ignored). The no-slip condition on v, is 

u*(z= f h , t ) = O  (2.9) 

while the boundary conditions on 0 take the form 

1 (2.10) 
[(dw,,/d0,,)+_$B0+ sin (28- 20+)](z = f h, t )  =O; 

aw"P,, =fl(Q)L 
If the anchoring is rigid equation (2.10) reduces to 

8(z= fh , t )=O*.  (2.1 1) 

The splay and bend geometries can be recovered as special cases of the above equations 
by putting 

8, =o  (2.12) 

and 
8+ =x/2. (2.13) 

In these cases flow accompanies time rate of change of distortion. If H is assumed to be 
rotated in the xz plane (about they axis, normal to the xz plane which the director field 
occupies) with uniform angular frequency R 

H = ( H  sin Rt, 0, H cos R t )  (2.14) 

(at the end of every period, starting from t =O, H is along +z) ,  equations (2.7H2.11) 
suffice to describe n and v with the substitution t,b = a t  as long as 0 is a single valued 
function of z .  

2.2 Twist geometry 
H and n are assumed to be confined to the xy plane. For dependence of n on z and t, 

only a twist distortion is possible and flow is absent. With the easy axes at the two plates 
given by 

n(z = 2 h, t )  = (sin 4 +, cos 4 +, 0) (2.15) 

it is possible to consider, in principle, both twisted and chiral nematics. With 

n(z, t )  = C,, 0); 4 = 4(z, t); H = (HS,, HC,, 0) (2.16) 

the volume and surface energy densities at  time t become 

K2 = k 2 4 , ,  +~K2@2,,-&,~aHZ COS' (t,b - 4); k ,  = 2.rrK,/P0; (2.17) 
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Orientational bistability in nematics 60 1 

W,, = [*B,+ sin' {$(z= + h)- 4+>] + [+B,- sin' {&z= - h)- 4-}], (2.18) 

where K ,  is the twist elastic constant; Po is the equilibrium pitch of the cholesteric, B,, 
are the (twist) anchoring strengths at z = k h, respectively. The torque equation 

Kt4,zz  + tPoXaf fZ  sin (211/ - 24)- Y 14 =o (2.19) 

is to be solved with the boundary conditions 

[ k ,  + Kz4,z  +$B+,  sin (24- 24 *)l(z= k h)=O, (2.20) 

which reduce, for rigid anchoring, to 

4(z= + h ) = 4 , .  (2.21) 

For a nematic, k, = 0 and the boundary values 4 * must be such that 14 + - 4 - I < 7c/2 (to 
ensure non-polarity of n). In the case of rigid anchoring for cholesterics it is assumed 
that the cholesteric helix retains its equilibrium pitch in the absence of external fields 
[29]. Then, k ,  =($+ - 4-)KZ/2h.  For cholesterics there is really no restriction on 
++ - &. As in 5 2.1, by putting II/ =Rt,  we can regard H to be rotating in the xy plane 
with uniform angular frequency R. 

2.3. Method of solution 
The complete dynamical problem is not solved; only the static limit is considered by 

assuming that H is rotated very slowly in small steps. The viscous effects are ignored by 
equating to zero ux, 0 and 4; thus n becomes a function of z alone. Equations 
(2.5)-(2.7), (2.10) and (2.1 1) are examined for the splay/bend geometry and equations 
(2.17H2.20) for the twist configuration. The director orientation profile conforming to 
the relevant boundary conditions is conveniently obtained by solving the governing 
equations numerically using the orthogonal collocation method [30,3 11 with the zeros 
of the 24th order Legendre polynomial as collocation points [32]. 

It is then straightforward to compute the total free energy by gaussian quadrature 
1321. As per the assumptions made about the sample dimensions, F is obtained for the 
rigid anchoring case by integrating the volume free energy density with respect to z 
between z = m3). When the 
anchoring is weak, we add to this integral the surface free energy density computed 
at z =  _+h. 

In some situations n is described by a symmetric deformation which is a maximum 
at the sample centre. This quantity yields a natural measure of the total distortion in the 
sample. It will be seen in due course that the deformation angle at  the centre continues 
to remain a convenient measure of the deformation even when the director field is non- 
symmetric. The aim of the next two sections will be to study the distortion and F as 
functions of the field angle for different cases. The material parameters chosen for the 
model calculation are: 

h (effectively the sample volume is taken to be 2h x 

(Kl,  K,, K3)=(3.5, 2.0, 4 . 2 ) ~  1O-'*N [33]; 

~ ~ = 1 0 - ~  [16]. (2.22) 

A sample thickness of 2h = 200 pm has been employed for all calculations. All angles are 
measured in radians. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
4
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



602 U. D. Kini 

3. Results 
3.1. Uniform tilted orientation; rigid anchoring 

The initial uniform orientation is no = (S, 0, C) (S = sin 8,; C = cos 19,) tilted in the 
xz plane making an angle 8, with the z axis; thus, 8+ =8, from equation (2.11). If 
H = (- HC, 0, H S )  is applied in the xz plane normal to no, a homogeneous distortion can 
occur above the threshold 

ff, = HF(O0) = (~/2~)Cf1(~o)/POxal  1’2. (3.1) 
For 8, = O  (or n/2) HF reduces to the bend (or splay) threshold. R = H/HF provides a 
convenient measure of N. As the initial configuration is symmetric so is 8(z) with the 
extremum 8, = 8 ( z  = 0). 

Initially, H is along no and consequently there is no deformation, 8, = Bo itself and F 
is a minimum. Now His  rotated away from no in the xz plane. For each (1,, 8, and F are 
determined. Next the same procedure is repeated except that H is rotated away from 
-no towards no. The plots of 8, and F as functions of (1, are depicted in figure 1 for 
different R and do values. The results are in qualitative agreement with those of [ll-131. 

When R 5 1, 8, varies continuously with (1, with no sign of bistability. For R = 1 the 
variation is quite sharp close to II/=OO+(n/2). The variation of F is also smooth 
except that for R = 1, F changes rather sharply in the middle region (see figures 1 (a) and 
(b); for R 5 1 only 8, = 0 has been represented; all details are qualitatively valid for the 
other two tilt angles). The possibility of a small jump in 8, as (1, crosses the middle 
region cannot be ruled out. This is somewhat difficult to establish numerically as II/ has 
to be varied in very small steps. When R > 1, however, two branches of the 8, and F 
curves result for a given R (see figures 1 ( c H f ) )  due to discontinuous changes occurring 
as t,b crosses a critical value $, (for example see figures 1 (c) and ( d )  for 8, =O; R = 1.4: 
transition from J of branch 1J to P of branch L M  when (1, > 1-87 or from M of LM to N 
of I J  when (1, < 1.28). These two disjoint branches can be regarded as representing two 
distinct sequences of deformations undergone by n, depending upon the particular way 
or history of (1, variation. For instance (see figures 1 (c) and ( d ) )  while the branch I J  is 
obtained by varying II/ from 0, towards 8, + n, LM results when II/ is changed from 
#,+n towards 8,. The overlapping of the two branches on the JI line results in the 
bistability width wb for given 8, and R (for instance, the (1, difference between points M 
and J in figures 1 (c) and (d ) ) .  For given 8,, wb increases with R.  For a fixed R, wb 
decreases as 8, is changed from zero (bend geometry) to n/2 (splay geometry). 
Interestingly, the region of bistability spreads out equally on either side of the midpoint 
of the (1, range. 

Calculations for different sample thicknesses but the same 8, and R show that wb is 
unchanged. This is a consequence of scaling which becomes apparent when equations 
(2.7) and (2.5) are rewritten for the static case with equation (3.1) 

J(8)8,,, +$(dJ/d8)82,, t $ R 2  sin(2II/ -28)=0; 
(3.2) 

(3.3) 

I J(8) = 4 . f i (~ ) /n2 f i (~o) ;  < = z/h; 

[4rqn*~,(e,)l w,, = J(o)e2,, - R* cos2 (II/ - 0) = P 

where P depends on the parameters R,  (1,, 8, and k = K , / K 3 .  F is the integral of W,, with 
respect to z between z = h; equivalently, 

F = [n2fl(8,)/4h] 1 -+ P dc.  (3.4) 
- 1  
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-0.5 -1.0 

0.0 

F 

-1 .o 

0.0 

F 

-2.0 
0.5 .lr 2.5 -1.0 JI 1.0 

(d 1 (f) 
Figure 1. Variation of 0, and F with $ for different 0, and R. F is the total free energy of the 

sample (measured in units of 10- ' J). The initial uniform orientation no =(sin 0,, 0, 
cos 0,) in the xz plane is deformed into a symmetric homogeneous distortion n =(So, 0, CJ, 
0 = H(z) by the magnetic field H =(HS,, 0, HC,). Om = 0(z =0) is the extremum deformation 
angle at the centre of the sample whose boundaries are at z = & h (= 100 pm). The director 
is rigidly anchored at the boundaries. R = H/HdOO) where H,(B,) (see equation 3.f) is the 
Freedericksz threshold for the given configuration. H is tilted away from no and from -no 
to get the two different parts of the curves; equivalently, $ is varied from 0, and from 0, f n. 
All angles are measured in radians. Material parameters are given in equations (2.22). 
0,=0. Homeotropic anchoring. ( (aHd))  R = ( l )  0.5, (2) 1.0, (3) 1.1,  (4) 1.4. 8,=0.75. 
(e) R=(l)  1.1, (2) 1.4. 0,=(7~/2). Homogeneous anchoring. ( f )  R = ( l )  1.1, (2) 1.4. The F 
curves have not been shown for (e) and (A. For R > 1, there exist two distinct branches of 
the 0, and F curves due to bistability. The width of bistability, wb, increases with R for a 
given 0,. For a given R, w,, diminishes when B0 is increased from 0 (homeotropic 
anchoring) to (n/2) (homogeneous anchoring). Dashed parts of a curve in the bistable 
region correspond to distortion states which are more energetic than the corresponding 
states on the other branch (see $3.1). 

For given k, Bo and R the solution from equation (3.2) is independent of k but depends 
only on $. If h+kp, the 8, versus $ curve will not change if R is held fixed. Due to the 
property of P from equation (3.3), when k+ kp ,  F+ F / p ;  thus, the shape of the F versus $ 
curve will also not change. 

Calculations show that wb depends strongly on the relative magnitudes of K ,  and 
K ,  as well as on the particular geometry (i.e. O0). In bend geometry (0, = O), at fixed R, 
w,, increases (or decreases) when K ,  is diminished (or enhanced) with respect to K,. In 
splay geometry (8, = n/2),  at fixed R,  wb increases (or diminishes) when K ,  is enhanced 
(or decreased) with respect to K,. The scaling aspect becomes apparent by noting that 
4 6 )  is essentially dependent on k as a parameter. Hence, at given R, k and Bo, the 
Solution from equation (3.2) (and, hence, the 8, versus $ curves as well as wb) will not 
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604 U. D. Kini 

depend on the individual values of K ,  and K,. However, at given R, k,  $ and O,, if 
( K 1 , K 3 ) + p "  (K1,K3), then F+p" F as for equation (3.4). 

When R > 1 ,  for all practical purposes, the two branches of the theoretical curve 
represent two distinct sequences of stable distortion states. The limit $, is defined as 
that limiting value of Q such that when Q is increased beyond the limit by a small 
amount (-0.01 radian) no further solutions can be found for that branch. In a 
numerical calculation this can be qualified further. Suppose we change $ form 8, 
towards 8, + n. When Q crosses Q, by a small amount the algorithm will either diverge 
or converge to a deformation state on the other branch. 

Experimentally too [13], for R > 1, all states on either branch have been recognized 
to be states of stable deformation as the investigators have allowed sufficient time to 
elapse after each increment of $. Excellent theoretical fits have been obtained for both 
branches of each curve for R > 1. They have also demonstrated that when Q is changed 
beyond +c  by a small amount (A$), the distortion on one branch becomes unstable and 
goes over to the corresponding deformation state on the other branch for fixed R. 
Typically, for 2h = 370 pm, R = 1.2, Q, = loo", AQ = 5" and the time of transition (z) is 
= 30 min. A solution of the dynamical equation (2.7), neglecting the coupling between 
flow and orientation, has led to a description of the rate of change of distortion in good 
agreement with experiment [13].  A question does arise, however, whether the time of 
transition can be shortened. 

To a certain extent a rigorous solution of the dynamical equations (2.7H2.8) should 
be able to answer the above question; this is not attempted here as it falls outside the 
scope of the present work. It is, however, possible to utilize physical arguments to 
derive orders of magnitude for z, the characteristic time that may be involved in the 
process. To find out what form z should have, it is sufficient to note that equations (2.7) 
and (2.8) can be written in dimensionless form (neglecting inertial terms) as 

(3.5) 1 J(8)8,,,+~-(dJ/de)82,5+3R2 sin(2$-28)-8,,-G2(8)~x,g=0; 

~ ~ , ( O ) ~ ~ , , + G , ( ~ ) ~ , , I , , = O ;  u=t/z;  z=4h2y1/~2f1(e0); 

VX = UXT/h; G I@)= 9 l ( W V  1; G2(@ = S*(e)/v 1. 

It is seen that the characteristic time z scales as h2. It has already been noted that wb 
depends only on R regardless of the sample thickness. It may now be stated tentatively 
that for a given R, the transition time (for instance from J to P or from M to N ;  see 
figures 1 (c) and (d))  may be shortened if one uses a thinner sample; this fact is also 
capable of experimental verification. 

It appears at this stage that a linear stability analysis would be a convenient way to 
investigate the dynamics that might occur near the edges of the bistable region. Such an 
exercise is slightly complicated in the splay/bend geometry due to the unavoidable 
coupling between the director and velocity perturbations. It shall be seen later (see 
section 5.2) that perturbation analysis can be achieved more conveniently in another 
situation. 

3.2. Non-symmetric director tilt at the sample planes; rigid anchoring 
The initial director field from equation (2.3) is now a function of z as 8* are not 

equal as from equations (2.1) and (2.1 1). On such a configuration, H is imposed at same 
angle + with respect to z in the xz plane and Q is slowly varied. There is no threshold in 
this geometry as H, applied at any Q, will only change the existing distortion. As 8 is an 
asymmetric function of z, the angle at the sample centre 8, = 8(z = 0) is not an extremum. 
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Orientational bistability in nematics 605 

It is found that two kinds of deformation are possible depending upon the values of 
R,  + and 8,. 

(i) In the first, which we shall call g,, 8 varies monotonically from 0- a t  z =  -h 
to 8,  at z =  + h .  

(ii) In the second, denoted by g2,  8 shows an extremum 8, at  some z=z,, 
-h<z,<h. In principle 8, can be used for representing the extent of 
deformation. But the solution g 2  occurs only over limited ranges of + for given 
R and 8,. Hence, it is convenient to use 8, to represent the amount of 
distortion. 

A variety of combinations of 8* can be chosen to yield a non-symmetrically 
distorted ground state. To simplify matters, 0- is taken to be (7c/2) (homogeneous 
anchoring at z = - h) and different values are chosen for 0, in the range 0 < 0 + < (7c/2). 
As 0- is fixed, the splay threshold HF(7$?) can be employed to provide a measure of H. 

For the uniformly tilted case (see figure 1) it was sufficient to  start with H along no 
(or along -no) and change $ over n: radian. Because 8- # 8, in the present case, there 
does arise some ambiguity about the range over which $ should be varied and also 
about the initial and final values of $. To settle this, first the 0, versus II/ plots are shown 
in figures 2 (a)+d) for different R = H/HF(n/2) and 0, = 0.8; $ is varied over a range of 

r 

Figure 2. Plots of 8, and F versus $ for different R and examples of the asymmetric B2 profiles. 
Rigid anchoring 8 = 0 + at z = h(or 5 = & 1) so that the ground state from equation (2.3) is 
asymmetric even in the absence of H. 8 - = (n:/2), 8, = 0.8 radian in all cases. R = H/H,(n/2) 
where H,(n/2) is the splay Freedericksz threshold from equation (3.1). 8, = O(z = 0) is not 
the extremum of O(z). (aHd)  R =(1) 0.5 (2) 1.0, (3) 1.1, (4) 1.5. The $ range PIP, (=  n: radian) 
is sufficient to give a proper representation of bistability. The actual position of P ,  (and, 
hence, P2)  is a function of R, 8+. (e )  and (f) The asymmetric 8 profile exhibits an extremum 
(g2 profile) over limited ranges of t,b for given R and O*. Two examples are given. R = 1.5, 
t,b=(e) -0.6, ( f )  3,Olradian. Bistability should be observable even in cases where a 
Freedericksz threshold cannot be defined (see 0 3.2). 
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606 U. D. Kini 

about 271. It is immediately apparent that the results are amply represented by varying 
$ between the minima of F ( P ,  to P,). The parts of curves outside this range can be 
generated by reflection of each part of the curve (in the PIP, region) in suitable mirror 
planes. Further, the gap PIPz is found to be 71 radian (perhaps due to non-polarity). The 
positions of P ,  and P ,  on the $ axis depend on R and on 8+, for a given 8-. Figures 2 (e) 
and ( f )  also give the representative 9, profiles in two situations where 8 exhibits 
extrema. It is thus clear that bistability and discontinuous orientational changes are 
possible even in a situation where no threshold can be defined. 

Figures 3 (aHc) contain plots of 8, against t,b for 8- = (71/2) and three different 0 +. As 
there is no bistability for R 5 1, only two values of R > 1 have been chosen. The F plots 
have not been included as their shape is similar to the F plots shown in figures 1 and 2. It 
is seen that as 8+ diminishes (i.e. as the amount of initial deformation in the sample 
increases) wb decreases. When R is sufficiently small bistability may even be suppressed 
altogether by sufficiently enhancing the asymmetry between the director tilts at the 
sample planes. 

Another non-symmetric configuration that comes to mind is the reversely pretilted 
orientation at the sample planes. Though a number of different tilts are possible in this 
case, we shall confine our attention to the case 8, = k 0 ,+(~ /2 ) ,  where 8, is an acute 
angle. The starting configuration (from equation (2.3)) is again a function of z but now 

Figure 3. Variation of 0, as a function of $ for non-symmetric director tilt at the boundaries. 
Rigid anchoring. Plots of F have not been included but the more energetic states have been 
shown by dashed lines in the bistable region. (aHc) 0- =(n/2) (homogeneous alignment at 
z =  -h) .  0, =(a) 1.5 (b)  1.0 (c) 0.2radian. R=H/HF(7r/2). Curves have been drawn for 
R = ( l )  1.1, (2) 1.5. Bistability is found not to occur for R g  1, hence these results have not 
been included. Enhancement of the ground state distortion is detrimental to the 
occurrence of bistability. (dHf)) 0, = & Q0 +(7r/2); reversely pretilted ground state. 
R =H/H,(B,)  (see equation (3.1)). Curves have been drawn for R=( t )  1.1, (2) 1.5. 0 , = ( d )  
0.1, (e) 0.4, (J) 0.7 radian.The conclusions are similar to those of (aHc) (see 53.2). 
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Orientational bistability in nematics 607 

#-(n/2) and, therefore, n, are antisymmetric with respect to z=O. H is impressed on 
such a configuration in the xz plane and t,b is varied. Results are presented for this case 
in figures 3(dHf)  without going into the details of the stability of the initial 
configuration. 

As 8* = & d o  +(n/2) are equally spaced with respect to (n/2) and also because n at 
the sample centre is initially along x, it is obvious that (n/2) S t,b 5 (3n/2) should serve as 
an adequate t,b range for describing the variation of deformation; this point has been 
checked numerically. In this case, again, there is no threshold for any t,b. To provide a 
measure for H ,  the value H,(B0 + 4 2 )  = HF( - 8, + n/2) from equation (3.1) can be 
chosen. 

In the absence of H ,  n,(z) is antisymmetric; once H is impressed on the sample, the 
director profile becomes asymmetric. As in the previous case, only over certain t,b 
ranges, the distortion exhibits the g2 type of profile. Again, therefore, 8, = 8(z = 0) is 
used for describing the extent of distortion in the sample. As bistability is not 
discernible for R S  1, only values of R >  1 have been used. The conclusion of figures 
3 ( d H f )  are similar to those of figures 3 (aHc);  enhancement of the distortion in the 
initial configuration is deleterious to the occurrence of bistability. 

3.3. Uniform tilted orientation at the sample planes: weak anchoring 
The easy axes at the sample planes as well as the initial orientation are given by 

equation (2.1) with 8, = 80. Under the action of H from equation (2.2), the deformation 
from equation (2.3) is described by the static part of equation (2.7) subject to the 
boundary conditions from equation (2.10). The initial task is to estimate the threshold 
for this case. This is conveniently achieved by linearizing equations (2.7) and (2.10) with 
respect to the perturbation 8“ = 8(z) - 8, for t,b = 8, + (n/2) from equation (2.2) 

(3.6) 1 en,55+q2Bn=o [B”,<&0,,8”](<= *I)=@ 

=hBe./Yi(oo); q2 =~oxaH2h2/Ylfi(~o). 
It must be remembered that for weak anchoring at the boundaries restrictions are 
placed on the derivative of 8“ and not on 8” itself. It is convenient to solve initially for 
the case of equal anchoring strengths at the sample planes. 

With Go+_ =o0, equation (3.6) supports two independent modes: Mode HI (or 
Mode H,) with B” even (or odd) with respect to the sample centre. Taking 8” zcos  qt ,  
equation (3.6) reduces to the compatibility condition for Mode HI 

C ,  = CJ, cos q - q sin q = 0 

from which q,(O < qc < ~ / 2 )  and hence the threshold 
(3.7) 

H ,  Hd60, B,) = (qc/h)Cfi(8o)/~o~aI l” (3.8) 
can be determined. For rigid anchoring, go>> 1 and qc3(n/2) as it should. When B, is 
diminished (when the anchoring is weakened) qc and, therefore, H ,  decrease for a given 
material and sample thickness. 

For Mode H,, with 9 “ z  sin 45, the compatibility condition of equation (3.6) 
reduces to 

C ,  3 0, sin q +q cos q = O  (3.9) 
which, of course, yields a higher qc(n/2 < qc < n) and, therefore, a higher threshold 
(which is only of academic interest). 
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608 U. D. Kini 

For asymmetric anchoring at the sample planes ( c T ~ +  #a,-), 

8" E & sin q< + @ cos 45 

is asymmetric with respect to z =O; O,, 0: are indeterminate, infinitesimal amplitudes. 
The compatibility condition for equation (3.6) becomes 

C , ,  =(sin 2q)(q2 - ce+g8-)- q(c0s 2q)(o,+ + o,-)=O (3.10) 

from which qc can be found; substitution in the right hand side of equation (3.8) leads to 
H, for the asymmetric case, with H ,  depending on both anchoring strengths. It may be 
checked that putting Go+ =Go- 

c, 2 = c, c, = 0. (3.11) 

As the zero of C ,  corresponds to the lower qc of equation (3.7), equation (3.1 1) will again 
lead to the Mode HI threshold from equation (3.8). 

For the sake of simplicity, anchoring strengths of the two boundaries are assumed 
to be equal. For given Be and other parameters, H ,  is calculated from equations (3.7) 
and (3.8). It is possible to consider different initial pretilt angles, e0, as shown in figure 1.  
However, only the homeotropic pretilt is studied; B0 =O. As the distortion for any value 
of H and (I is symmetric, 6, = 6(z = 0) is an extremum and serves to measure the amount 
of deformation. Once distortion occurs in the sample, the elastic torques acting at the 
surface produce a change in the tilt of n at the surfaces away from the free axes. As 
the deformation is symmetric, 8 at either boundary will be equal; 6(z = k h) = 6,. 
Figures 4 (aHd) show the variation of 0, with (I for different anchoring strengths B,. 
The starting value of (I is 0 or n. Bistability does not appear for R 5 1. F is calculated 
(see 6 2.3) by adding the surface and volume contributions. The shape of the F versus II/ 
curves is $ound to be similar to that of the curves shown previously. 

At small R (e.g. R = l.l), wb is hardly affected by a change in Be; for R = 1.5, however, 
the change is more pronounced quantitively as well as qualitatively. When Be is 
decreased from to 3 x lo-' N m- ', wb hardly changes (these results have not been 
displayed). In this range of B,, qc from equation (3.7) does not change appreciably from 
(n/2). When B, is diminished further, wb increases (see figures 4(a) and (b)); this is also 
accompanied by a corresponding increase in I6,l. When Be is decreased further to 
10- ' N m- ', this trend is reversed and wb starts to diminish (see figure 4(c)). When B, is 
decreased still further (to 0.5 x lop7 Nm-l), wb+0 and a new behaviour is evident; 8, 
changes sign discontinuously as $ crosses ( 4 2 )  (see figure 4(d)). 

To understand this more completely, 6, and 8, have been plotted as functions of (I 
for R = 1.5 and two values of Be. When Be = 2 x N m-l  (see figure 4 (f)) there 
exists considerable difference between 0, and 8, in the region of bistability showing 
that the surface continues to control the deformation. At  B,=10-7Nm-' (see 
figure 4 (e))  0, tends to approach 8, in the region of bistability; it is clear that the surface 
has started to yield to the dictates of the distortion in the bulk. 

It is necessary, therefore, to appreciate the two different ways in which anchoring 
strength can affect bistability. When Be is initially decreased from the rigid anchoring 
limit, the tilt at the surface can change sufficiently away from the easy axis as H is 
rotated away from no so that the total amount of distortion is reduced; this partial 
yielding at the surface can actually enhance the width of bistability. When Be is reduced 
considerably we reach the other limit. If R is high enough there may occur a tendency 
for n in a large portion of the sample to turn towards H as the tilt of H with respect to 
the easy axes of the plates exceeds a critical value; this may actually deter bistability. 

in equation (3.10) and factorizing leads to 
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Orientational bistability in nematics 609 

(4 (d 1 (.f) 
Figure 4. Plots of 0, and 0, versus ~ for different R and Be. Weak anchoring at the sample 

planes. Easy axes at the sample planes and initial uniform alignment are homeotropic 
(8=0). B, is the anchoring strength at either boundary. R =H/H,(B,) where IfF(&) is the 
Freedericksz threshold calculated, for a given B,, from equations (3.7) and (3.8). ern is the 
extremum distortion angle at the sample centre. Dashed lines in the bistable region indicate 
states of higher total free energy F which is now calculated as the sum of volume and 
surface contributions. The variation of F has not been shown. Again, bistability is found 
not to set in for R S  1. (aHd)  8, versus $. R = ( l )  1.1, (2) 1.5. Be=(a)2.0,(b) 1.3,(c) I.l,(d)O.5 
(in units of lO-’N m-I). The bistable behaviour for R =  1.1 is hardly affected but that for 
R =  1.5 exhibits some variation. wb may increase or decrease with respect to the rigid 
anchoring value depending upon the magnitude of B,. (e) and (f) Om (see curves 2) and 6, 
(see curves 1) versus $ for R = 1.5.6, is the director tilt angle with respect to the easy axis at 
the sample planes (as the anchoring is weak, 8, does not remain fixed at 8, = O  but varies, 
depending upon the extent of distortion in the bulk). The indications are clear that if B, is 
small enough and R sufficiently high, a discontinuous transition may occur from a deformed 
state of orientation to an aligned state (with the director everywhere parallel to H) when $ 
exceeds some limit (see Q 3.3). 

Calculations have shown that when B, is very small ( N lo-’ Nm-I), 8, and 8, may 
jump discontinuously to $ as $ is changed beyond a certain limit. Outside this limit, 
deformation disappers with 8 becoming equal to $ in the entire sample. This actually 
indicates the possibility of the occurrence of a discontinuous transition from a 
deformed state to a state of uniform alignment (in the entire sample) which follows. H. 
The possibility cannot be ruled out that this transition may even be realizable at higher 
B, when R is sufficiently large. Detailed calculations of this case will be presented 
separately. 

3.4. Twist geometry; rigid anchoring 
It is proposed to study the solutions of the static part of equation (2.19) with the 

boundary conditions from equation (2.21). As the ground state is uniformly twisted, we 
can set 4 = rf 4o without loss of generality. Then in the field free limit, n at the sample 
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610 U. D. Kini 

centre is oriented along the y axis. Because of the (anti-) symmetry of the ground state, 
the relevant range for field tilt is 0 =< $5 z (i.e. H is rotated away from + y or - y in the 
xy plane). The untwisted ground state (&, = 0) is a special case. The cases of a twisted 
nematic and a chiral nematic are illustrated separately. 

When do = 0, the I$ profile is symmetric with respect to z = 0 at any H and $; hence, 
&=d(z=O) can be employed as a distortion measure. In all other cases the 
deformation is asymmetric (as in 4 3.2 we again encounter the 9, type 4 profiles over 
limited ranges of $) so that one studies dC = 4(z = 0). H is conveniently measured in 
terms of the twist threshold H , =  (z/2h) (K2/,u,x,)'i2. While calculating F ,  k ,  is assumed 
to be zero. Bistability is found not to occur for R g 1, hence only R > 1 is chosen. The 
results of figure 5 (a)  are similar to those of figure 1. Figures 5 (b) and (c) indicate that an 

*:y/- 
-1.0 

0.5 p 2 5  

(d 1 (4 (f)  
Figure 5. Twist deformations. Variation of 4,,,, 4c as functions of $ for different R and 40. The 

ground state is uniformly twisted with the helical axis along z such that no =(S, ,  C,, 0) 
where 4 = $(z). At the boundaries z = & h, n is rigidly anchored along (Ifr sin 40, cos 40, 0) 
so that 2 do is the total twist angle of the ground state and n at the sample centre is along y. 
H=(HS,, HC,, 0) is applied in the x y  plane and $ is varied between 0 and n. R =  H / H ,  
where H ,  is the twist Freedericksz threshold. R j 1 is of no interest from the viewpoint of 
bistability. Curves are drawn for R=( l )  1.1. (2) 1.5, in all diagrams. 40=(a) 0.0 (untwisted 
homogeneously aligned ground state), (b) 0.5, (c) 0.75 radian. (a) d,,, versus $. 4,,, = 4(z  = 0) 
is the maximum distortion angle of the symmetric director profile. (b)  and (c) q5c versus $. 
4c = 4 ( z  = 0). The 4 profiles are asymmetric with respect to the sample centre. (dm 4c 
versus $ for a cholesteric of equilibrium pitch 2nhl4,. The initial configuration is the same 
as that for (aHc). While calculating F for this case it is necessary to add the term 
proportional to k2 = ( K 2 4 0 / h )  to the free energy density. 4o = ( d )  0.1, (e) 06, (f) 1.2 radian. 
An increase in the ground state twist deters the occurrence of bistability. By suitably 
changing the markings on the $ axis, the above results can be taken over to the case of a 
x,<O nematic. As in figures 2 and 3, it must be remembered that a Freedericksz field 
cannot be defined for a rigidly anchored chiral nematic with H acting normal to the helical 
axis. The results of figure 5 are valid for any material and depend only on R, h and the 
boundary values (see (j 3.4). 
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Orientational bistability in nematics 61 1 

increase in the ground state deformation can even suppress bistability when R is not 
large. 

The twisted nematic has the inherent limitation that the total twist of the ground 
state cannot exceed (n/2). This limitation can be overcome by using either a cholesteric 
or a chiral nematic. For the sake of simplicity the same assumption is carried over here 
for the ground state; we effectively assume that the ground state is a cholesteric which 
retains its equilibrium pitch = 2nh/4, while being rigidly anchored at the sample planes 
[29]. The k ,  term (k ,=K24 , /h )  is included while calculating F. Figures 5 ( d H f )  
reaffirm the conclusions of figures 5 (a)-@). Interestingly, bistability may be removed 
even at R = 1.5 by employing a sufficiently high initial twist unattainable in a twisted 
nematic. It should be remembered that when H is applied normal to the helical axis of a 
chiral nematic there is no deformation threshold. This is again a demonstration that 
bistability can occur even in the absence of a symmetry breaking Freedericksz 
transition. 

It is worth noting that the static part of equation (2.19) along with equation (2.21) 
can be recast into the form 

(3.12) 

This only means that the solution $(<) depends on J/, R and on the boundary values for 
any material provided that anchoring is rigid. The results of figure 5 should be 
interpreted in this light. 

The twisted ground state is a generalization of the untwisted (homogeneously 
aligned) state in the twist case just as the non-symmetric ground state is a generalization 
of the uniformly tilted (homogeneous or homeotropic) ground state in the splay/bend 
geometry. Still, one difference remains. In the splay/bend case the antisymmetrically 
distorted ground state can be distinguished from the asymmetrically defomed one 
depending upon the l3+ values at the boundaries. In the twist case 4 ( z )  of the ground 
state varies linearly with z whatever the value of 4&; hence, the coordinate system can 
always be rotated about the z axis by a suitable angle to bring the y axis parallel to n at 
the sample centre. Thus the most general ground state in the twist case is 
antisymmetric. Obviously the effects of weak anchoring on bistability can be expected 
to be similar to those in the splaylbend case. 

4,<< +(n2R2/4) sin (+ -4) cos (+ - 4)=0; 4({ = f 1)= $&.  

4. Effect of an additional electric field E 
So far only the effect of H on the orientation has been studied. In this section the 

action of an additional static E will be included to find out how H induced bistability is 
influenced. Two convenient ways of impressing E on a sample present themselves. In 
the first, a voltage Vis applied between plates z = f h whose inside surfaces, coated with 
conducting layers, act as electrodes. In this case E, having the constant value V/2h, will 
act normal to the plates in the absence of deformation. This geometry can be 
conveniently studied by a slight generalization of the picture developed in [lS] to 
include magnetic terms; these results will be presented separately. 

In the second case the voltage V is impressed between electrodes x= fg which 
sandwich the nematic cell. In the absence of distortion E, having the constant value 
V/2g, acts along the x axis. In this section some results are presented for this case. A brief 
description of the derivation of the governing equations is given on the basis of previous 
work [16-18]. 
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612 U. D. Kini 

4.1. Governing equations for E applied parallel to the plates 
The interelectrode gap (2s) is assumed to be large compared to the sample thickness 

(2h). Then by considering regions of the sample far away from the electrodes the 
distortion can be assumed to be homogeneous. The director field is defined by 
equations (2.1) and (2.3). Together with Maxwell's curl equation the boundary 
conditions on E imply that 

E = [Ex, 0, E,(z)]; Ex = constant. (4.1) 

The boundary condition on the electric induction D, along with Maxwell's divergence 
equation, implies that D,=O in the sample; this leads to an expression for E, 

~z = SeCeC{(ei + e3)~0}d,z-~aExI/fi(B); f 2 ( @  = E i  +&ace29 (4.2) 

where el  and e3 are flexoelectric coefficients; E~~ and ei the dielectric constants along 
and normal to n, respectively; E, = E - E ~ .  As r/: the potential difference, is held constant 
the term W [3,15] 

W"'= - PiEi-~O~ijEiEj/2; 

Eij=EISij+Eaninj; Pi=e,nink,,+e,nkni,k 
(4.3) 

is added to the right-hand side of W,, in equation (2.5); E~~ is the dielectric tensor and P i  
the flexoelectric polarization. The equations of equilibrium result from a minimization 
of Wv, 

(4.4) I f3(e)e,22 + t(df3/dW2n + 3poxaH2 sin (211/ -26) 

+ EfSBCB&a&I&II&O~(e)=O 
2 2  2 f3(Q)=fi(e)+(ei +e3) Sece/&of2(@ 

Flexoelectricity contributes a volume effect just as it does in the other configuration 
[ 151. In the limit of small distortions the flexoelectric contribution vanishes from 
equation (4.4). But when the deformation is large, flexoelectricity can influence the bulk 
free energy through a normalization of the elastic constants. For weak anchoring the 
boundary conditions are as from equation (2.10) except that 

For the sake of simplicity flexoelectricity is assumed to be absent (el = e3 =O). The 
anchoring is also taken to be rigid from equation (2.11) [35]. In principle, 8,  can 
assume any value. For the present we shall confine our attention to two simple cases 
of initial homeotropic alignment along z (0, = 0) and initial homogeneous tilt along 
x (d ,  = n/2). This also ensures that the distortion will be symmetric. 

It is straightforward to show that in the bend geometry the second order (electric) 
threshold is given by [16-181 

It is natural to use E , ( H = O )  as a measure of E in the bend geometry. 
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Orientational bistability in nematics 613 

Similarly in the splay geometry the second order splay (magnetic) threshold is 

H,=  C{(~2K~/4h2)+(~O~a~~IEZ/~~)}/~O~a11’2. (4.7) 
The equation for twist distortion takes an especially simple form [18] when 29>>2h. 

The boundary conditions on E and D, along with Maxwell’s equations, demand that 
Ex=constant, E,=O and E,=O. This amounts to adding { - ( E ~ , S ~ + E ~ C $ ) E , , E ~ / ~ }  to 
the right-hand side of W,, from equation (2.17) and (E,E,EZS,C,/~) to the left-hand side of 
(2.19). As it will become clear, some results for this case can be deduced by analogy from 
those for the splay/bend geometry. Hence, a detailed study of the effects of E on 
bistability of twist distortions will not be presented here. 

4.2. Results for rigid anchoring; splaylbend geometry 
Previous studies have shown [16-181 that the effect of E on deformation may 

depend strongly on the magnitude of E, even in the absence of H. In the same way, the 
value of E, can be expected to determine the way in which E affects H induced 
bistability. The initial task, therefore, is to make a proper choice of E 11, I before taking up 
model calculations. 

The values [16,18] 

~ l l , l =  18.8, 8.2 (4.8) 
are used along with those of the remaining parameters from equation (2.22). In the bend 
geometry this leads to the familiar discontinuous transition (see curve 1 in figure 6 (a)) 
when 8, is plotted against rE = E,/E,(H = 0) from equation (4.6). The dashed curves in 
the region of bistability indicate states of higher F.  When E, is diminished (see curves 2 
and 3 in figure 6 (a)) the transition width decreases and finally (see curve 4) the transition 
becomes continuous [16-181. 

The results of figures 6 (b) and (c) are analogous to those of figure 6 (a). The initial 
alignment being homogeneous (along x), E x  has a stabilizing influence. With H 
impressed along z, 8, is plotted as a function of R = H / H ,  from equation (4.7). When E, 

is high enough and E x  sufficiently stabilizing, the H induced splay transition becomes 
discontinuous (see figure 6 (b). At a given stabilizing E x  the transition can be made 
continuous by decreasing E, (see figure 6 (c)). These results are in agreement with the 
predictions of [ 171. 

It should be remembered that figures 6(aHc) represent one of the domains of 
distortion; the deformation in the other domain can be obtained by using the 
horizontal axis as a mirror plane. The continuity or otherwise of the transition can be 
controlled if it is possible to vary the value of E,. It is known that diminution of E, can be 
achieved, at a given temperature, by using time varying E of sufficiently high frequency 
if the nematic is known to exhibit strong dielectric relaxation. It is also possible to 
decrease E, by heating the nematic towards the isotropic point [36]; in this case if an 
exact calculation were to be performed, it would be necessary to use the actual values of 
K ,  and K ,  at different temperatures. 

Figures 6 ( d H f )  illustrate the rather obvious effect of a stabilizing E x  on H induced 
bistability in a sample with initial homogeneous alignment along x. The strength of E is 
measured in terms of rE defined earlier. R = H/H,(.rr/2), where HF(7r/2) is the splay 
threshold. An increase in rE diminishes wb. For equation (4.8) bistability disappears at 
R =  1.5 when rE =0.5 (see figure 6(d)).  When E, is lower (see figures 6 ( e )  and (f) 
bistability is removed by choosing a higher rE. The action of the stabilizing E x  is to 
enhance the effective threshold H ,  from equation (4.7) in the splay geometry. Hence, if 
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1.5 e m F ,  
0.0 

1.1 'E 0.9 

etf!'E 1.0 -1.0 9 1.0 

-1 0.9 R 

(4 

e~~ 1.2 -1.0 * 1.0 

Figure 6. (aHc)  Electric field induced bend transition; effect of E on the H induced splay 
transition. Rigid anchoring. Only one of the possible two domains is represented in each 
diagram. E is impressed along x parallel to the plates z = & h. The results are in agreement 
with those of [ 16181. (a) ern versus rE in the bend geometry; H =O. Initial orientation is 
homeotropic, along z. rE = EJE,(H = 0) where the denominator is the second order bend 
threshold from equation (4.6). Curves are drawn for E , , ,  cl =(1) 184,8.2, (2) 17.48,9.53, (3) 
16.15, 10.85, (4) 14.83, 12.18 [37]. As E, is diminished, the transition turns continuous. 
(b) and (c) Homogeneous initial alignment along x. E x  has a stabilizing influence. For H 
acting along z there exists a second order Freedericksz threshold H, from equation (4.7). 
R = H/H,.  (b) 8, versus R for E , , , E ~ =  18.8,8.2. E,=(l) 0.0, (2) 0-15, (3) 0.225, (4) 0.3 (in units 
104Vm-'). When the stabilizing E is strong enough, the H induced splay threshold 
becomes discontinuous. (c) ern versus R for E ,  = 0.3 x lo4 V m '. The values of and E~ 

are as in figure (a). Diminution of E,, at a given stabilizing Ex, causes the H induced splay 
transition to turn continuous. (dH f) Homogeneous initial alignment along x. E is 
impressed along x. R = H/H,(a/2) where HA7c/2) is the splay Freedericksz threshold. From 
equation (3.1) rE is defined as in figure (a). Curves are drawn for R = ( l )  1.1, (2) 1.4. 
EII,EL=(d) 18.8, 8.2, (e) and ( f )  1483, 12.18. rE=(d) 0 5  (e) 0.5 ( f )  1.0. A stabilizing E 
enhances the effective splay Freedericksz threshold H, from equation (4.7). Hence at a 
given H ,  bistability can be removed by using a sufficiently high E (see $4.2). 

H is kept constant and Ex sufficiently increased so that H < H,, bistability will 
disappear. It is quite possible that a stabilizing E, applied to normal to the plates, may 
have a similar influence on H induced bistability for initial homeotropic alignment. 

In contrast, E has a destabilizing influence in the bend geometry so that the effective 
bend magnetic threshold 

HB = C{(K3n2/4h2) - ( E o E , & J , 2 / &  ,,)l/PLoXal 1'2 (4.9) 

decreases from HF(0) from equation (3.1). Hence, wb can be expected to increase when rE 
is enhanced. In particular, if R = H/H,(O)  then bistability should set in even for R S 1. 

Figures 7 (aHf) illustrate these effects for two different values of E, and various 
values of rE and R. When R is sufficiently low, one can notice the gradual way in which 
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I 

/ 2  

-Y 
(b) (d 1 (f 1 

Figure 7. Effect of E on H induced bistability. Initial orientation is homeotropic along z .  E is 
impressed along the sample planes. rE = EJE,(H = 0) from equation (4.6). R = H/H,(O) 
where HF(0) is the bend Freedericksz threshold from equation (3.1). c , , ,  cL=(uHc) 14-83, 
12.18, (dHf) 18.8, 8.2. (a) r , = 0 5 .  R = ( l )  1.1, (2) 1.4. (6) rE=l.O. R = ( l )  1.1,  (2) 1.4. (c) 
rE = 1.0. R =( 1 )  0.5, (2) 1-0. The bistability width increases with rE for a given R. Due to the 
destabilizing nature of E which reduces the effective magnetic bend threshold bistability 
appears even for R g l .  ( d )  r E = 0 5  R = ( l )  05, (2) 1.0. (e) rE=05 .  R = ( l )  1.1, (2) 1.4. ( f )  
rE= 1.0. R = ( l )  1.0, (2) 1.8. wb increases when E, is enhanced for a given R and rE. 
Interestingly wb appears to diminish when R is increased at rE = 1.0 (see 0; this could be 
because H is acting on a director field which is already deformed by E) (see 94.2). 

the nature of the solution changes as R is enhanced. This case has been discussed in 
some detail in [18] (see figure 4 in 0 3.4 of [ls]); there it has been shown that applying 
first E and then H results in a deformation whose characteristics are different from one 
which results when H is impressed at a small angle with no prior to applying E. Another 
facet of the effect of E can be seen when R is high enough. Calculations show that an 
increase in R over certain ranges actually appears to diminish w,,! 

(wb, R)=(2.63, 0.9), (2.46, 1*0), (2.12, 1.8). 

It must be remembered that here we are dealing with a situation where H ,  does not 
exist due to E being high; there exists a competition between the actions of E (which has 
already produced a distortion) and H which is imposed on the distorted orientation; the 
intensity of the competition changes with $. When $ is small enough, H has some 
control over the distortion; once H has tilted sufficiently away from no the deformation 
is controlled mainly by E. This point will be treated separately. 

Another aspect worth noting is the scaling. Equation (4.4) does admit scaling but in 
a restricted way as compared to equation (3.2). By changing over to the variable 
5 = z/h, H h  can be expressed in terms of R.  As E x  = V/2g, the E; term contains the factor - V2h2/g2. Hence if h+hp, g + g p  and V+V, the Ex term in equation (4.4) will also get 
scaled. This is, of course, valid only for rigid anchoring. When the anchoring is weak, 
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616 U. D. Kini 

even this scaling will cease to hold. It seems likely that the H induced bistability in the 
case of initial homogeneous alignment will be similarly affected by E applied normal to 
the plates. 

5. Miscellaneous cases 
5.1. More complex deformation states and bistability 

In the preceding sections only distortions described by a single angle have been 
considered. There is no doubt that bistability may be observable in more complex 
deformations which are described by two angles. The elastic coupling between the two 
orientational degrees of freedom may give rise to novel patterns of behaviour. One of 
the simplest situations will arise when the nematic has xa <O. 

In this case the Freedericksz direction for H is along no; when H is normal to no, no 
torque is exerted by H. Consider no homogeneously aligned along x with H also along 
x. In this configuration, H can couple either with a twist fluctuation to produce a 
twist distortion n = [cos &z), sin (4(z), 01 above the twist threshold H ,  = (7c/2h) 
( K 2 /  -pO~J1’* or with the splay fluctuation to yield a splay/bend deformation 
n = [cos &z), 0, sin O(z)] above the splay threshold H = (n/2h) (Kl/ - po~a)1/2.  As 
K ,  < K,, in general, the twist deformation will be favourable. Then, taking into account 
the sign of xa, the governing equation will be identical to the static limit of equation 
(2.19). In particular, the results of figure 5 will go over to those for a nematic with xa < 0 
if the $ range is changed from (0, 7c/2) to (x/2,3x/2); we start with H along y (or - y )  and 
rotate H from the initial position in the xy plane. Even the dynamics of the twist 
distortion will be described by equation (2.19). 

Consider now what happens when H is rotated in the xz plane with H > H,. When 
H is along x we know that a twist distortion is produced. Suppose H is along z with no 
along x. In this position, again, H exerts no torque on the director field. If H is now 
rotated by a small angle towards x in the xz plane it becomes immediately clear that the 
deformation will involve splay/bend. Further rotation of H towards x should bring in 
twist also. Thus in this geometry the xa < 0 nematic will suffer a distortion which will be 
described by two angles; this case is worth a more detailed scrutiny. 

For a xa > 0 nematic we can think of geometries in which n depends on two angles. A 
few examples will be given. 

(i) Consider the twisted nematic or a long pitch cholesteric subjected to H normal 
to the plates (along the equilibrium helical axis) [37]. If H is sufficiently high, 
bistability can be expected when H is rotated about an axis parallel to the 
plates. 

(ii) A nematic, homogeneously aligned along x, is subjected to H which is initially 
in the yz plane [38]; say. H =(O, HC,, HS,). Above the threshold, the distortion 
is described by two angles. With H sufficiently high, H is now rotated such that 
H = (HS, ,  HC,C,, HS,C,). 

(iii) Consider a non-symmetric deformation from equations (2.3) and (2.1) in the xz 
plane. It is obvious that when H is along y, there exists a threshold. In this case, 
with H sufficiently high, H is rotated in the yz  plane; etc. 

In all the previously mentioned geometries, the dynamics caused by a uniformly 
rotating H will involve the time rate of change of two angles. The induced shear stress 
will create a body force having components along two mutually perpendicular 
directions in the sample plane; thus the ensuing flow will be of a more general nature 
than the one encountered for the single angle situation. It should be interesting to study 
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these cases experimentally to find out how the nature of solutions will be affected. From 
the results of $4  is will be clear that an additional E may have a non-trivial influence 
on the statics and dynamics in these cases also. 

5.2. Linear stability analysis 
Before concluding, it seems pertinent to attempt a linear stability analysis for at 

least one simple case. The aim is to determine whether the equilibrium orientation has 
the propensity to undergo an instability near the edges of the bistable region under the 
action of time dependent perturbations. As mentioned already (see $ 3.1), the 
splay/bend geometry is somewhat complicated as the coupling between flow and 
orientation cannot be ignored. The twist geometry, therefore, comes to mind. The 
general dynamical equation (2.19) shows that as long as the twist angle is a function of z 
and t ,  there will occur no accompanying flow. 

Accordingly, a perturbation 4"(z, t )  is assumed to be imposed on the equilibrium 
twist angle 4 ( z )  under the action of H from equation (2.16) with the director rigidly 
anchored along y at both plates. The total twist angle 4 T = 4 ( ~ ) + 4 ' ' ( ~ , t )  obeys 
equation (2.19). 

Substituting into equation (2.19) and linearizing with respect to 4" it is found that 
4(z) obeys the equilibrium equation (3.12) whose solutions have already been discussed 
in 3.4. The perturbation d"(z, t )  satisfies (ignoring p i )  

Kz~",,,-~"po~aH2 cos [2$ -24(~)]  - y l d " = O  (5.1) 

f#l"(z= +h, t )=O (5.2) 

and 

for rigid anchoring at the boundaries. The fact that the nature of the variation of 4" 
with z and t is determined to a certain extent by 4(z) must be borne in mind. Seeking 
solutions of the form $"(z, t )  % p(z) exp (vt), with v real, and changing over to 5 = z/h, 
equations (5.1) and (5.2) can be rewritten as 

(5.3) 1 8,c~-p[v(h2yi/Kz)+(R2712/4)COS (2$-24)1 =o  
and 

p( t=+l)=O; R=H/HT, 

where H ,  is the twist Freedericksz threshold. As in the case of most perturbation 
calculations equation (5.3) results in an eigenvalue problem. At given R and $, the 
ground state 4(5) is determined. Equation (5.3) is numerically solved by the orthogonal 
collocation method and v calculated for different $. 

Suppose $ = 0, then &() = 0 (no ground state deformation). Then, 

kcc - B [ v o ( h 2 ~ l / ~ z )  + ( ~ ~ ~ ~ / 4 ) 1 =  0, (5.4) 

where vo = v($ = 0). Putting f i  %Po cos (71(/2), equation (5.4) reduces to vo = -(a2/4) 
(R2 + 1)  (K2/hzyl). For 5CB, y1 =0.0985 Pas  [13]. Using equation (2.22), one finds at R 
= 1.5, v o =  -0.0167s-'. From equation (5.3) it becomes clear that if we study the 
dimensionless time constant s = vh2y , /Kz  instead of v, our results will become 
materially independent with s becoming a function of R and $ for a given set of 
boundary conditions. 

Figure 8 depicts the variations of s (see figure 8(a)) and the free energy F (see 
figure 8(b)) with II/ for different R. When R t l  (see curve l), figure 8(a)  s varies 
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0.0 + 3.0 0.0 + 3.0 
(4 (4 

Figure 8. Plots of the dimensionless time constant s= v h 2 y , / K 2  (of a linear perturbation) and 
total free energy F (of the ground state) as functions of tj the magnetic tilt angle in twist 
geometry. n is initially aligned along y. H = (HS, ,  HC,, 0) is applied in the x y  plane and II, is 
varied between 0 and x. At each $, the ground state n=(S,, C,, 0) and its free energy F are 
calculated using the material parameters from equation (2.22). Some typical curves of 
b,,, = 4,,, = $(z = 0) have already been shown in figure 5. A linear perturbation 4” z /3(z) 
exp (vt) is imposed on &z); the time constants v and s are determined with y1 = 0.0985 Pas  
[13]. s andF(inunitsof lo-” J)areplottedasfunctionsoftjfor R=H/H,=(1)0.5,(2) 1.0, 
( 3 )  1.5, where H ,  is the twist Freedericksz threshold. The s curves are independent of the 
material parameters. Though the F curves are specific to the given material, their shape is 
material independent. The striking resemblance between the s and the F curves can be 
seen. It is clear that the equilibrium configuration shows a tendency to undergo instability 
at the edges of the bistable region (see $5.2). 

continuously with rl/ but remains negative throughout the rl/ range. When R= 1, s 
increases continuously from a negative value to approach zero near rl/ = 4 2  (see curve 
2) in figure 8 (a). The rather sharp change in s in the middle region is possibly due to a 
jump in the equilibrium configuration as 1,9 crosses 4 2 .  For R> 1 (see curves 3) the 
variation of s is more pronounced and s-0 at the edge of the bistability region on either 
branch. Interestingly, one finds a close resemblance between the shapes of the s and the 
F curves. Scaling analysis of equation (2.17) with k ,  = 0 (non-chiral nematic) shows that 
F for a nematic simply scales as K, ,  hence the shapes of the F curves can be expected to 
be the same for all materials. It must be borne in mind that it is rather difficult to work 
close to the edge of the bistable region as 4 ( z )  changes very rapidly there and one has to 
vary I) in small increments. One can, therefore, state that the equilibrium configuration 
4(z)  may suffer an instability near the edges of the bistable region in twist geometry. 
Similar results can be expected in other cases also. 

6. Conclusions 
The H induced bistability in nematics has been studied in the limit of static 

deformations by considering a sequence of stable states resulting from a slow variation 
of the tilt of H. In the simple cases treated in this work, n is assumed to depend on only 
one angle. The governing equations admit scaling for rigid anchoring. For given 
material constants, boundary orientations and R, wb is independent of the sample 
thickness. The scaling is slightly more general for twist geometry than for the 
splay/bend case. The scaling breaks down when the anchoring at the boundaries is 
weakened. 

In the splay/bend geometry H is rotated about an axis parallel to the sample planes 
but normal to the plane containing n. When the initial orientation is uniform, wb is 
found to depend on no; w,, is higher for the homeotropic no than for the homogeneous no 
at a given R.  Some of the above results are in qualitative agreement with those of 
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[l l-131. For given no and R, bistability can be suppressed by a sufficient diminution of 
the anchoring strengths at the sample planes. When the anchoring has been 
considerably weakened and H rotated sufficiently away from no, a discontinuous 
transition may occur from a deformed state to an aligned state with n along H in all 
parts of the sample; this will be examined in detail separately. 

The splay/bend configuration can be generalized to a rigidly anchored, non- 
symmetric tilt of n at the two boundaries. Two different cases have been studied. In one, 
the ground state is asymmetric while in the other it is antisymmetric. It is possible to 
find bistable behaviour even in these cases over certain ranges of +, the magnetic tilt 
angle. The increase of deformation in the ground state is found to be deleterious to the 
occurrence of bistability; it should be interesting to consider the additional effect of 
weak anchoring in this case. 

In the twist geometry H, which is in the sample plane, is rotated about an axis 
normal to the boundaries. This case can be generalised to include the twisted and chiral 
nematics (the latter can have total twist > 4 2  radian). Sufficient twist in the ground 
state is found to remove bistability for a given H.  Thus these results are in qualitative 
accord with those for the deformed splay/bend ground state. In both the splay/bend 
and twist geometries bistability associated with discontinuous orientational changes 
can occur even in configurations where a Freedericksz threshold does not exist. 

The effect of E impressed along the plates depends strongly on the magnitude of E,. 

It has been assumed that the nematic as well as the sample planes are insulators. When 
c, is large, E can produce a discontinuous transition in the bend geometry [16-181; in 
the splay geometry, the stabilizing effect of E leads to discontinuity in the H induced 
splay transition [17]. This can be traced to the strong perturbation of E by director 
distortions. 

A similar influence of E is found on H induced bistability. It should be possible, in 
principle, to vary the tilt of no and study the ensuing effect on H induced bistability. 
Calculations have shown [18] that in this case the effect of E, even in the absence of H, 
can become complex when E, is large. Hence, only two simple initial configurations 
have been chosen. For homogeneous no bistability can be suppressed, at given H, by 
increasing the stabilizing influence of E. The higher the E, the lower the E necessary to 
achieve this. When no is homeotropic, E has a destabilizing influence which reduces the 
effective H threshold for the bend transition. The general trend in this case is for wb to 
increase with E. However, the nature of variation of distortion can be rather different 
depending upon whether E, is high or low. E, can be varied either by changing 
temperature or by using a time varying E .  It may be possible to employ optical or 
capacitance techniques to study the way in which deformation changes for different 
values of E,. 

The effect of E in the twist configuration has not been studied. It is, clear, however, 
that the influence of E on the H induced bistability may depend upon the direction 
along which E is impressed parallel to the plates. This becomes clear if we take the 
specific example of the rigidly anchored ground state of 4 3.4 where n(z = 0) is along y. 
For given E, the influence of E will be different for E along y as compared to the case 
when E is impressed at some angle, say (7c/4)radian, with the y axis. 

It is straightforward to expect bistable behaviour induced by the actions of H and E 
in cases where n is described by two angles. These may be realizable in practice by 
varying the deformation in the ground state and by changing the tilt of the axis about 
which H is rotated. It should be interesting to study how bistability and scaling are 
affected in these cases. 
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The equations which describe bistable behaviour are merely the static limit of more 
general dynamical equations which account for the time rate of change of deformation 
caused by H rotating at a uniform rate. Time rate of change of n creates a shear stress 
which, in general, can result in flow. In the splay/bend geometries the occurrence of flow 
and the consequent coupling between flow and orientation cannot be ruled out [39]. It 
appears, however, that flow may be absent in the twist configuration; this might 
influence the time of transition in this case. The fact that bistable behaviour in the static 
limit can be influenced by using a deformed ground state naturally raises the question 
as to how this will affect the dynamics. 

The total free energy F has been calculated for all distortion states. It has been found 
that in the region of bistability the two states, for a given tilt of H, have different F .  It 
seems possible to get an order of magnitude for the time of transition from the state at 
one edge of the higher energy branch to the corresponding state on the lower energy 
branch using the free energy difference between the two branches [40]. Linear stability 
analysis for twist geometry shows that the equilibrium orientation has a tendency to 
undergo instabililty against perturbations near the edges of the bistable region. This 
analysis cannot give either the direction or the manner in which the deformation might 
change from one branch to the other. To understand the dynamics more completely it is 
necessary to solve the non-linear problem from equations (2.7H2.9) and (2.1 1). The 
direction of change is, however, intuitively obvious. 

Scaling analysis shows that the time of transition between two states should get 
affected when the sample thickness is changed. This points towards the need to do 
experiments with samples of different thickness to test the scaling of bistability width 
and to fnd out how the time of transition (from an unstable state at one edge of the 
bistable region) varies with the sample thickness. 

The author thanks a referee for useful comments which helped improve a previous 
version of the manuscript. 
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